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In this Letter the problem of optimization of speckle patterns in a ghost imaging (GI) system is addressed. The
mutual coherence between the measuring matrix and the sparsifying dictionary matrix is minimized to obtain
the required speckle patterns. Simulation and experimental results are presented, both showing that the quality
of the reconstructed results obtained with the optimized speckle patterns is much improved in comparison with
that obtained with the general unoptimized ones. We expect this method can be used to design GI systems with
high performance.
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Ghost imaging (GI) is an imaging technique that may
reconstruct the object nonlocally by correlating the light
intensity passing through or reflected by the object and
the illuminating light field[1–7]. GI has been already demon-
strated with entangled photons and thermal light[8–10]. It
has become an interesting research area in the last 10 years
since it has many potential applications such as remote
sensing[11–13], imaging through scattering media[14], object
authentication[15] and object tracking[16], imaging with a
colored object[17], and three-dimensional imaging[18].
One important topic in GI is how to improve sampling

efficiency and quality of the reconstructed image. Differ-
ent methods have been proposed, including homodyne
detection GI[19–21], high-order correlation GI[22–24], imaging
with averaged speckle patterns[25], and compressive ghost
imaging (CGI) which is done by introducing the compres-
sive sense (CS) techniques into the GI[26]. Under the frame-
work of ghost imaging via sparsity constraints (GISC)[11],
the influence of sparsity property of images on GI with
thermal light has been studied[27]. A speckle light modula-
tor (SLM) working in the amplitude regime is used both to
display the object and the intensity distribution that can
recover a good-quality image[28]. Also the use of measure-
ment matrices with multi-correlation scales was proposed
and proven to be more efficient than those with a uniform
correlation length[29].
In the theory of compressive sensing, if the numbers of

sampling needed for the reconstruction of the signal with
overwhelming probability is m, then m ≥ C· μ2ðA;ΨÞ·
S · log n[30], where C is a constant, S is the sparse level of
the signal, and n is the length. Term μ is the coherence
between the measuring matrix A and dictionary Ψ. It is
obvious that if we reduce the coherence, fewer samplings
would be needed for the reconstruction. The quality of the
reconstructed image is better under the same sampling. In
this Letter, the compressed sensing algorithm is used for
our reconstruction of the image. Inspired by the CS theory

that the quality of the reconstructed result is better if the
coherence between the measuring matrix and sparsifying
dictionary matrix is smaller[31–34], we show that the speckle
patterns in GI can be optimized with respect to the spar-
sifying dictionary by minimizing the mutual coherence
between them. In the rest of the Letter, we will first
describe the experimental setup and the theory of speckles
optimization, followed by the simulation and experimen-
tal results, and last the conclusion.

Figure 1 shows the experimental setup of GISC using a
digital micromirror device (DMD). The light from the hal-
ogen lamp is focused by a lens and then modulated by the
DMD. The resulting speckle pattern is then projected onto
the object plane by lens L1. The light transmitting from
the object is focused to the single-pixel detector by lens
L2. Each speckle pattern (m pixels × n pixels) can be
reshaped to one row (1 × N , N ¼ m × n) of a measuring
matrix denoted by A. At the same time a light intensity y
is recorded by the single-pixel detector. Repeating the
process K times, a measuring matrix A of K × N elements
and a light intensity vector denoted by Y of length K can
be obtained. The number of samplings can be far smaller
than the pixels of the image. Denoting the unknown object

Fig. 1. Experimental setup of GISC using DMD.
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by a column vector X of length N , the sampling process
can be described as

Y ¼ AXþ σ; (1)

where σ is the measurement noise. According to CS
theory, it is desirable to sparsely represent the vector X
to obtain a better reconstruction, which is usually feasible
for a natural image[26,27]. Suppose we have the suitable
dictionary Ψ (e.g., a wavelet dictionary) and X can be
sparsely represented as X ¼ Ψθ, where θ is the sparse
representation vector; with the data Y, the reconstruction
of X can been regarded as the following optimization
problem

~A ¼ arg min
X

1
2
‖Y− AX‖22 þ τ‖θ‖1; s:t:X ¼ Ψθ; (2)

where τ is a nonnegative parameter and its value should be
chosen according to the sparsity of the object. The sparser
the object’s representation, the larger τ should be. Term
‖v‖1 is the taxicab norm and ‖v‖2 the Euclidean norm.
Besides the general convex optimization algorithms[35],

there are many other methods specifically developed to
solve the problem described by Eq. (2), such as greedy al-
gorithms[36], iterative thresholding algorithm[37], fast itera-
tive shrinkage-thresholding algorithm[38], and the gradient
projection for sparse reconstruction (GPSR) algorithm[39].
In our work, we adopted the widely used GPSR algorithm.
As pointed out in Ref. [40], the coherence between the

Matrix A and Ψ has a significant impact on the quality of
the reconstruction. The coherence of A andΨ can be char-
acterized by the absolute value of the inner products of the
direction vectors of the columns of D ¼ AΨ, i.e.

μij ¼
jdTi dj j

∥di∥2∥dj∥2
; 1 < i; j < N ; i ≠ j; (3)

where di is the ith column ofD. The value of μij is confined
between [0,1]. Approximately speaking, the smaller the
overall value of μij , the better reconstruction one may
expect[31]. Among the different definitions of the overall
mutual coherence value, we choose the sum of μ2ij to be
minimized for its ease of computation

μ ¼
X
i≠j

μ2ij : (4)

To find the (approximate) solution of A that minimizes
μ, first one may define G ¼ DTD, E ¼ ‖G− I‖22 and then
solve the following optimization problem

Aopt ¼ arg min
A

E; s:t:A ≥ 0; (5)

where A ≥ 0 means that the elements of A must be non-
negative since they are the light intensity values. Gener-
ally the quantity E cannot be exactly regarded as μ.
However, as E is decreased, the diagonal elements of G,

which are ‖dj‖22, are gradually pushed to 1 and then
the off-diagonal elements of Matrix G gradually approach
μij , and thus E ≈ μ. The problem described by Eq. (5) can
be solved using the gradient descent algorithm[29]

(1) Set the initial matrix Ainit to be a Gaussian matrix.
(2) Repeat the following iteration until convergence is

achieved and the optimized matrix Aopt is obtained
• Calculate the gradient ∂E∕∂A;
• Update the measuring matrix A with

A←A− λ∂E∕∂A, with λ the fixed stepsize;
• Update the measuring matrix by imposing the con-

straints A ≥ 0.
Note that to work with the DMD, first we need to re-

scale the optimized Matrix Aopt to match the dynamic
range of the DMD and then round down the elements
to get a matrix with integer elements only so that the
speckle patterns can be used on the DMD.

The proposed method is tested by simulation first. The
Haar wavelet with decomposition level of 6 has been
chosen as our dictionary Matrix Ψ. Following the pro-
cedure described previously and starting with Ainit, which
is Gaussian-distributed, we obtain Aopt within 50 itera-
tions. Figure 2 shows the distributions of μij of the original
matrix Dinit ¼ AinitΨ (blue line) and the optimized matrix
Dopt ¼ AoptΨ (red line). It can be seen that the coherence
μij of Dopt are concentrated in the region with smaller co-
herence values if compared with that of Dinit. We further
calculated the averages of the coherence μij of Dinit and
Dopt, and the results show that the average is reduced from
0.0126 to 0.0096 by optimization.

With the two Matrices Ainit and Aopt, we simulated the
imaging process using the object (pattern of “tai chi”)
with a size of 64 pixels × 64 pixels as shown in Fig. 3(a).
The gray level is 8. Figure 3(b)–3(f) are the results with
different numbers of samplings (500, 1000, 1500, 2000, and
2500). Shown in the top line are the results obtained with

Fig. 2. Distributions of μij of the original matrix Dinit (blue line)
and the optimized matrix Dopt (red line). Coherence μij of Dopt

are concentrated in the region with smaller coherence values if
compared with that of Dinit.
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Gaussian Matrix Ainit and in the bottom line the opti-
mized Matrix Aopt from which we can see obvious
improvements.
To quantitatively evaluate the qualities of recon-

structed images, the relative mean square error (RMSE)
and peak signal-to-noise ratio (PSNR) is calculated

RMSE ¼
X
ij

ðI 0ij − I ijÞ2∕
X
ij

I 2ij ; (6)

where I ij is the gray level of the ði; jÞth pixel of the original
image and I 0ij is the reconstructed image

MSE ¼ 1
mn

Xm−1

i¼0

Xn−1

j¼0

‖I 0ði; jÞ− I ði; jÞ‖2

PSNR ¼ 10 · log10

�
MAX2

I

MSE

�
; (7)

where MAXI ¼ 255 is the gray level of the image.
The RMSE and PSNR values of the reconstructed im-

ages with different numbers of samplings by Ainit and Aopt

are shown in Fig. 4, from which we can see that for the
same numbers of samplings, the RMSE value obtained
with Aopt is reduced by more than 20% compared with
the corresponding Ainit. The PSNR value obtained with
Aopt is also larger than the corresponding Ainit.
We then test the method with experiments. Figure 5(a)

shows the image of the test object. The image is obtained
by the same system operating in a pixel-by-pixel scanning

mode and thus may serve as the reference image.
Figures 5(b)–5(e) show the results reconstructed from dif-
ferent number of samplings (1000, 2000, 3000, and 4000),
from which we may see that the result obtained with 2000
samplings using Aopt is of comparable quality to that ob-
tained with 4000 samplings using Ainit. The RMSE and
PSNR values of the results are calculated using Fig. 5(a)
as the reference image and are shown in Fig. 6, which
confirms the observed improvements in Fig. 5.

In conclusion, we show that the speckle patterns in
GISC can be optimized with respect to the sparsifying dic-
tionary by minimizing the mutual coherence between the
measuring matrix and the dictionary matrix. The results
show that the quality of the reconstructed images can be
much improved using the optimized matrix. We expect
this method, when combined with, e.g., wavefront shaping
techniques[41], can be used to design GI systems with high
performance.
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